While not strictly part of the Java API provided by the Guacamole project, guacamole-ext is an API exposed by the Guacamole web application within a separate project such that extensions, specifically authentication providers, can be written to tweak Guacamole to fit well in existing deployments.

Extensions to Guacamole can:

  1. Provide alternative authentication methods and sources of connection/user data.

  2. Provide event listeners that will be notified as Guacamole performs tasks such as authentication and tunnel connection.

  3. Theme or brand Guacamole through additional CSS files and static resources.

  4. Extend Guacamole’s JavaScript code by providing JavaScript that will be loaded automatically.

  5. Add additional display languages, or alter the translation strings of existing languages.

Guacamole extension format

Guacamole extensions are standard Java .jar files which contain all classes, library .jar files, and resources required by the extension, as well as the Guacamole extension manifest. There is no set structure to an extension except that:

  1. The guac-manifest.json manifest must be in the root of the archive.

  2. Any required library .jar files that will not be placed within GUACAMOLE_HOME/lib/ must be in the root of the archive.

  3. Java classes and packages for the extension itself (or for unpacked dependencies of the extension) will be read relative to the archive root, as well.

Beyond this, the semantics and locations associated with all other resources within the extension are determined by the extension manifest alone.

Extension manifest

The Guacamole extension manifest is a single JSON file, guac-manifest.json, which describes the location of each resource, the type of each resource, and the version of Guacamole that the extension was built for. The manifest can contain the following properties:


The version string of the Guacamole release that this extension is written for. This property is required for all extensions. The special version string "*" can be used if the extension does not depend on a particular version of Guacamole, but be careful - this will bypass version compatibility checks, and should never be used if the extension does more than basic theming or branding.


A human-readable name for the extension. This property is required for all extensions. When your extension is successfully loaded, a message acknowledging the successful loading of your extension by name will be logged.


A unique string which identifies your extension. This property is required for all extensions. This string should be unique enough that it is unlikely to collide with the namespace of any other extension.

If your extension contains static resources, those resources will be served at a path derived from the namespace provided here.


An array of the classnames of all AuthenticationProvider subclasses provided by this extension.


An array of the classnames of all Listener subclasses provided by this extension.


An array of all JavaScript files within the extension. All paths within this array must be relative paths, and will be interpreted relative to the root of the archive.

JavaScript files declared here will be automatically loaded when the web application loads within the user’s browser.


An array of all CSS files within the extension. All paths within this array must be relative paths, and will be interpreted relative to the root of the archive.

CSS files declared here will be automatically applied when the web application loads within the user’s browser.


An array of all HTML files within the extension that should be used to update or replace existing HTML within the Guacamole interface. All paths within this array must be relative paths, and will be interpreted relative to the root of the archive.

HTML files declared here will be automatically applied to other HTML within the Guacamole interface when the web application loads within the user’s browser. The manner in which the files are applied is dictated by <meta ...> tags within those same files.


An array of all translation files within the extension. All paths within this array must be relative paths, and will be interpreted relative to the root of the archive.

Translation files declared here will be automatically added to the available languages. If a translation file provides a language that already exists within Guacamole, its strings will override the strings of the existing translation.


An object where each property name is the name of a web resource file, and each value is the mimetype for that resource. All paths within this object must be relative paths, and will be interpreted relative to the root of the archive.

Web resources declared here will be made available to the application at app/ext/NAMESPACE/PATH, where NAMESPACE is the value of the namespace property, and PATH is the declared web resource filename.

The only absolutely required properties are guacamoleVersion, name, and namespace, as they are used to identify the extension and for compatibility checks. The most minimal guac-manifest.json will look something like this:

    "guacamoleVersion" : "1.5.5",
    "name" : "My Extension",
    "namespace" : "my-extension"

This will allow the extension to load, but does absolutely nothing otherwise. Lacking the semantic information provided by the other properties, no other files within the extension will be used. A typical guac-manifest.json for an extension providing theming or branding would be more involved:


    "guacamoleVersion" : "1.5.5",

    "name"      : "My Extension",
    "namespace" : "my-extension",

    "css" : [ "theme.css" ],

    "html" : [ "loginDisclaimer.html" ],

    "resources" : {
        "images/logo.png"   : "image/png",
        "images/cancel.png" : "image/png",
        "images/delete.png" : "image/png"


Updating existing HTML

The existing HTML structure of Guacamole’s interface can be modified by extensions through special “patch” HTML files declared by the html property in guac-manifest.json. These files are HTML fragments and are identical to any other HTML file except that they contain Guacamole-specific meta tags that instruct Guacamole to modify its own HTML in a particular way. Each meta tag takes the following form:

<meta name="NAME" content="SELECTOR">

where SELECTOR is a CSS selector that matches the elements within the Guacamole interface that serve as a basis for the modification, and NAME is any one of the following defined modifications:


Inserts the specified HTML immediately before any element matching the CSS selector.


Inserts the specified HTML immediately after any element matching the CSS selector.


Replaces any element matching the CSS selector with the specified HTML.


Inserts the specified HTML immediately before the first child (if any) of any element matching the CSS selector. If a matching element has no children, the HTML simply becomes the entire contents of the matching element.


Inserts the specified HTML immediately after the last child (if any) of any element matching the CSS selector. If a matching element has no children, the HTML simply becomes the entire contents of the matching element.


Replaces the entire contents of any element matching the CSS selector with the specified HTML.

For example, to add a welcome message and link to some corporate privacy policy (a fairly common need), you would add an HTML file like the following:

<meta name="after" content=".login-ui .login-dialog">

<div class="welcome">
    <h2>Welcome to our Guacamole server!</h2>
        Please be sure to read our <a href="/path/to/some/privacy.html">privacy
        policy</a> before continuing.

After the extension is installed and Guacamole is restarted, the “welcome” div and its contents will automatically be inserted directly below the login dialog (the only element that would match .login-ui .login-dialog) as if they were part of Guacamole’s HTML in the first place.

An example of an extension that modifies style and HTML components for the purpose of providing custom “branding” of the Guacamole interface can be found in the doc/guacamole-branding-example directory of the guacamole-client source code, which can be found here:

Accessing the server configuration

The configuration of the Guacamole server is exposed through the Environment interface, specifically the LocalEnvironment implementation of this interface. Through Environment, you can access all properties declared within, determine the proper hostname/port of guacd, and access the contents of GUACAMOLE_HOME.

Custom properties

If your extension requires generic, unstructured configuration parameters, is a reasonable and simple location for them. The Environment interface provides direct access to and simple mechanisms for reading and parsing the properties therein. The value of a property can be retrieved by calling getProperty(), which will return null or a default value for undefined properties, or getRequiredProperty(), which will throw an exception for undefined properties.

For convenience, guacamole-ext contains several pre-defined property base classes for common types:


The values “true” and “false” are parsed as their corresponding Boolean values. Any other value results in a parse error.


Numeric strings are parsed as Integer values. Non-numeric strings will result in a parse error.


Numeric strings are parsed as Long values. Non-numeric strings will result in a parse error.


The property value is returned as an untouched String. No parsing is performed, and parse errors cannot occur.


The property is interpreted as a filename, and a new File pointing to that filename is returned. If the filename is invalid, a parse error will be thrown. Note that the file need not exist or be accessible for the filename to be valid.

To use these types, you must extend the base class, implementing the getName() function to identify your property. Typically, you would declare these properties as static members of some class containing all properties relevant to your extension:

public class MyProperties {

    public static MY_PROPERTY = new IntegerGuacamoleProperty() {

        public String getName() { return "my-property"; }



Your property can then be retrieved with getProperty() or getRequiredProperty():

Integer value = environment.getProperty(MyProperties.MY_PROPERTY);

If you need more sophisticated parsing, you can also implement your own property types by implementing the GuacamoleProperty interface. The only functions to implement are getName(), which returns the name of the property, and parseValue(), which parses a given string and returns its value.

Advanced configuration

If you need more structured data than provided by simple properties, you can place completely arbitrary files in a hierarchy of your choosing anywhere within GUACAMOLE_HOME as long as you avoid placing your files in directories reserved for other purposes as described above.

The Environment interface exposes the location of GUACAMOLE_HOME through the getGuacamoleHome() function. This function returns a standard Java File which can then be used to locate other files or directories within GUACAMOLE_HOME:

File myConfigFile = new File(environment.getGuacamoleHome(), "my-config.xml");

There is no guarantee that GUACAMOLE_HOME or your file will exist, and you should verify this before proceeding further in your extension’s configuration process, but once this is done you can simply parse your file as you see fit.

Authentication providers

Guacamole’s authentication system is driven by authentication providers, which are classes which implement the AuthenticationProvider interface defined by guacamole-ext. When any page within Guacamole is visited, the following process occurs:

  1. All currently installed extensions are polled, in lexicographic order of their filenames, by invoking the getAuthenticatedUser() function with a Credentials object constructed with the contents of the HTTP request.

    The credentials given are abstract. While the Credentials object provides convenience access to a traditional username and password, implementations are not required to use usernames and passwords. The entire contents of the HTTP request is at your disposal, including parameters, cookies, and SSL information.

  2. If an authentication attempt fails, the extension throws either a GuacamoleInsufficientCredentialsException (if more credentials are needed before validity can be determined) or GuacamoleInvalidCredentialsException (if the credentials are technically sufficient, but are invalid as provided). If all extensions fail to authenticate the user, the contents of the exception thrown by the first extension to fail are used to produce the user login prompt.

    Note that this means there is no “login screen” in Guacamole per se; the prompt for credentials for unauthenticated users is determined purely based on the needs of the extension as declared within the authentication failure itself.

    If an authentication attempt succeeds, the extension returns an instance of AuthenticatedUser describing the identity of the user that just authenticated, and no further extensions are polled.

  3. If authentication has succeeded, and thus an AuthenticatedUser is available, that AuthenticatedUser is passed to the getUserContext() function of all extensions’ authentication providers. Each extension now has the opportunity to provide access to data for a user, even if that extension did not originally authenticate the user. If no UserContext is returned for the given AuthenticatedUser, then that extension has simply refused to provide data for that user.

    The Guacamole interface will transparently unify the data from each extension, providing the user with a view of all available connections. If the user has permission to modify or administer any objects associated with an extension, access to the administrative interface will be exposed as well, again with a unified view of all applicable objects.


Because authentication is decoupled from data storage/access, you do not need to implement full-blown data storage if you only wish to provide an additional authentication mechanism. You can instead implement only the authentication portion of an AuthenticationProvider, and otherwise rely on the storage and features provided by other extensions, such as the database authentication extension.

The Guacamole web application includes a basic authentication provider implementation which parses an XML file to determine which users exist, their corresponding passwords, and what configurations those users have access to. This is the part of Guacamole that reads the user-mapping.xml file. If you use a custom authentication provider for your authentication, this file will probably not be required.

The community has implemented authentication providers which access databases, use LDAP, or even perform no authentication at all, redirecting all users to a single configuration specified in

A minimal authentication provider is implemented in the tutorials later, and the upstream authentication provider implemented within Guacamole, as well as the authentication providers implemented by the community, are good examples for how authentication can be extended without having to implement a whole new web application.


The SimpleAuthenticationProvider class provides a much simpler means of implementing authentication when you do not require the ability to add and remove users and connections. It is an abstract class and requires only one function implementation: getAuthorizedConfigurations().

This function is required to return a Map of unique IDs to configurations, where these configurations are all configurations accessible with the provided credentials. As before, the credentials given are abstract. You are not required to use usernames and passwords.

The configurations referred to by the function name are instances of GuacamoleConfiguration (part of guacamole-common), which is just a wrapper around a protocol name and set of parameter name/value pairs. The name of the protocol to use and a set of parameters is the minimum information required for other parts of the Guacamole API to complete the handshake required by the Guacamole protocol.

When a class that extends SimpleAuthenticationProvider is asked for more advanced operations by the web application, SimpleAuthenticationProvider simply returns that there is no permission to do so. This effectively disables all administrative functionality within the web interface.

If you choose to go the simple route, most of the rest of this chapter is irrelevant. Permissions, security model, and various classes will be discussed that are all handled for you automatically by SimpleAuthenticationProvider.

The UserContext

The UserContext is the root of all data-related operations. It is used to list, create, modify, or delete users and connections, as well as to query available permissions. If an extension is going to provide access to data of any sort, it must do so through the UserContext.

The Guacamole web application uses permissions queries against the UserContext to determine what operations to present, but beware that it is up to the UserContext to actually enforce these restrictions. The Guacamole web application will not enforce restrictions on behalf of the UserContext.

The UserContext is the sole means of entry and the sole means of modification available to a logged-in user. If the UserContext refuses to perform an operation (by throwing an exception), the user cannot perform the operation at all.

Directory classes

Access to objects beneath the UserContext is given through Directory classes. These Directory classes are similar to Java collections, but they also embody update and batching semantics. Objects can be retrieved from a Directory using its get() function and added or removed with add() and remove() respectively, but objects already in the set can also be updated by passing an updated object to its update() function.

An implementation of a Directory can rely on these functions to define the semantics surrounding all operations. The add() function is called only when creating new objects, the update() function is called only when updating an object previously retrieved with get(), and remove() is called only when removing an existing object by its identifier.

When implementing an AuthenticationProvider, you must ensure that the UserContext will only return Directory classes that automatically enforce the permissions associated with all objects and the associated user.

REST resources

Arbitrary REST resources may be exposed by extensions at the AuthenticationProvider level, if the resource does not require an associated authenticated user, or at the UserContext level, if the resource should be available to authenticated users only. In both cases, the REST resource is provided through implementing the getResource() function, returning an object which is annotated with JAX-RS annotations (JSR 311).

The resource returned by getResource() functions as the root resource, providing access to other resources beneath itself. The root resource for the AuthenticationProvider is exposed at PATH/api/ext/IDENTIFIER, and the root resource for the UserContext is exposed at PATH/api/session/ext/IDENTIFIER, where PATH is the path to which Guacamole has been deployed (typically /guacamole/) and IDENTIFIER is the unique identifier for the AuthenticationProvider, as returned by getIdentifier().

The behavior of extension REST resources is generally left entirely to the implementation, with the exception that the “token” request parameter is reserved for use by Guacamole. This parameter contains the user’s authentication token when the user is logged in, and must be present on all requests which require authentication. Though not relevant to REST resources exposed at the AuthenticationProvider level, resources exposed at the UserContext level inherently require the “token” parameter to be present, as it is the sole means of locating the user’s session.


The permissions system within guacamole-ext is an advisory system. It is the means by which an authentication module describes to the web application what a user is allowed to do. The body of permissions granted to a user describes which objects that user can see and what they can do to those objects, and thus suggests how the Guacamole interface should appear to that user.

Permissions are not the means by which access is restricted; they are purely a means of describing access level. An implementation may internally use the permission objects to define restrictions, but this is not required. It is up to the implementation to enforce its own restrictions by throwing exceptions when an operation is not allowed, and to correctly communicate the abilities of individual users through these permissions.

The permissions available to a user are exposed through the SystemPermissionSet and ObjectPermissionSet classes which are accessible through the UserContext. These classes also serve as the means for manipulating the permissions granted to a user.

System permissions

System permissions describe access to operations that manipulate the system as a whole, rather than specific objects. This includes the creation of new objects, as object creation directly affects the system, and per-object controls cannot exist before the object is actually created.


The user is a super-user - the Guacamole equivalent of root. They are allowed to manipulate of system-level permissions and all other objects. This permission implies all others.


The user is allowed to create new connections. If a user has this permission, the management interface will display components related to connection creation.


The user is allowed to create new connection groups. If a user has this permission, the management interface will display components related to connection group creation.


The user is allowed to create new sharing profiles. If a user has this permission, the management interface will display components related to sharing profile creation.


The user is allowed to create other users. If a user has this permission, the management interface will display components related to user creation.

Object permissions

Object permissions describe access to operations that affect a particular object. Guacamole currently defines four types of objects which can be associated with permissions: users, connections, connection groups, and sharing profiles. Each object permission associates a single user with an action that may be performed on a single object.


The user may grant or revoke permissions involving this object. “Involving”, in this case, refers to either side of the permission association, and includes both the user to whom the permission is granted and the object the permission affects.


The user may delete this object. This is distinct from the ADMINISTER permission which deals only with permissions. A user with this permission will see the “Delete” button when applicable.


The user may see that this object exists and read the properties of that object.

Note that the implementation is not required to divulge the true underlying properties of any object. The parameters of a connection or sharing profile, the type or contents of a connection group, the password of a user, etc. all need not be exposed.

This is particularly important from the perspective of security when it comes to connections, as the parameters of a connection are only truly needed when a connection is being modified, and likely should not be exposed otherwise. The actual connection operation is always performed internally by the authentication provider, and thus does not require client-side knowledge of anything beyond the connection’s existence.


The user may change the properties of this object.

In the case of users, this means the user’s password can be altered. Permissions are not considered properties of a user, nor objects in their own right, but rather associations between a user and an action which may involve another object.

The properties of a connection include its name, protocol, parent connection group, and parameters. The properties of a connection group include its name, type, parent connection group, and children. The properties of a sharing profile include its name, primary connection, and parameters.


Guacamole connections are organized in a hierarchy made up of connection groups, which each act as folders organizing the connections themselves. The hierarchy is accessed through the root-level connection group, exposed by getRootConnectionGroup() by the UserContext. The connections and connection groups exposed beneath the root connection group must also be accessible directly through the connection and connection group directories exposed by getConnectionDirectory() and getConnectionGroupDirectory() of the UserContext.

When a user attempts to use a connection the connect() of the associated Connection object will be invoked. It is then up to the implementation of this function to establish the TCP connection to guacd, perform the connection handshake (most likely via an InetGuacamoleSocket wrapped within a ConfiguredGuacamoleSocket), and then return a GuacamoleTunnel which controls access to the established socket.

Extensions may maintain historical record of connection use via ConnectionRecord objects, which are exposed both at the Connection level and across all connections via the UserContext. Such record maintenance is optional, and it is expected that most implementations will simply return empty lists.


If connection state will not be tracked by the extension, and the parameters associated with the connection will be known at the time the connection object is created, the SimpleConnection implementation of Connection can be used to make life easier.

Managing/sharing active connections

After a connection has been established, its underlying GuacamoleTunnel can be exposed by a UserContext through the Directory returned by getActiveConnectionDirectory(). The ActiveConnection objects accessible through this Directory are the means by which an administrator may monitor or forcibly terminate another user’s connection, ultimately resulting in Guacamole invoking the close() function of the underlying GuacamoleTunnel, and also serve as the basis for screen sharing.

Screen sharing is implemented through the use of SharingProfile objects, exposed through yet another Directory beneath the UserContext. Each sharing profile is associated with a single connection that it can be used to share, referred to as the “primary connection”. If a user has read access to a sharing profile associated with their current connection, that sharing profile will be displayed as an option within the share menu of the Guacamole menu.

The overall sharing process is as follows:

  1. A user, having access to a sharing profile associated with their current active connection, clicks its option within the share menu.

  2. Guacamole locates the ActiveConnection and invokes its getSharingCredentials() function with the identifier of the sharing profile. The contents of the returned UserCredentials object is used by Guacamole to generate a sharing link which can be given to other users.

  3. When another user visits the sharing link, the credentials embedded in the link are passed to the authentication providers associated with each installed extension. It is up to the extension that originally provided those credentials to authenticate the user and provide them with access to the shared connection.

  4. When the user attempts to connect to the shared connection, the extension establishes the connection using the ID of the connection being joined. This is not the connection identifier as dictated by guacamole-ext, but rather the unique ID assigned by guacd as required by the Guacamole protocol. This ID can be retrieved from a ConfiguredGuacamoleSocket via getConnectionID(), and can be passed through a GuacamoleConfiguration through setConnectionID() (instead of specifying a protocol, as would be done for a brand new connection).